Geometry

Geometry has been called the first science. It is as old as humans. Geometry...geo is earth...metry is measure. Earth measure is surveying. Surveying is a requirement for civilization to occur in a river valley. Civilization requires taxation to fund a government. Rivers often flood the fertile valley. Boundaries must be quickly and accurately reestablished to prevent disruption in the revenue to the government.

Another use of geometry in every river valley civilization is to build structures to honor a deity or deities. Temple building geometry was often accomplished with three simple tools... a compass, a straightedge and a marking device. All dimensions of a temple were derived by geometrically harmonizing from a declared radius of a circle whose length became the side of a unit square or square one. When we say "Let's go back to square one" we rarely mention that we are referring to an ancient geometric process of harmony and proportion in designing temples.

THE FORTY-SEVENTH PROBLEM OR EUCLID

Geometry bas two great treasures: one is " the theorem of Pythagoras; the other, the division of a line into extreme and mean ratio. The first we may compare to a measure of gold; the second we may name a precious jewel.
johannes Kepler

\because

Two intersecting circles contain all the proportions necessary to generate the polygons found in nature and the five Platonic volurnes.

Calculate Square Roots

You can use the Pythagorean Theorem to prove that each new rectangle is a Square Root Rectangle. That is, their long and short sides form the ratios (beginning with the Square), Root 1, Root 2, Rout 3, Root 4, Root 5 and so on. Each of these "roots" have numerical values. Here are approximations, but use your calculator to find more decimal places for each, and extend their values below.

$$
\begin{aligned}
& \sqrt{5}=2.236 \\
& \sqrt{4}=2.000=\text { Double Square } \\
& \sqrt{3}=1.732 \\
& \sqrt{2}=1.414 \\
& \sqrt{1}=1.000=\text { Square }
\end{aligned}
$$

Fig. 14

Fig. 15

- Locare a diagonal of a double square face.
- Locate a diagonal chrough the body of the double cube.

If the short edge of the double cube equals I, the diagonal through a double square face equals $\sqrt{ } 5$, and the diagonal through the body of the double cube cquals $\sqrt{ } 6$ (fig. 16).?

Fig. 16

Fig. 17

Introduction to the Golden Mean

THE GOLDEN MEAN

Write out the first few terms of the Fibonacci sequence. Draw a line under each to make it a fraction, and underneath write the Fibonacci sequence shifted back one term.

$\frac{1}{0}$	$\frac{1}{1}$	$\frac{2}{1}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{8}{5}$	$\frac{13}{8}$	$\frac{21}{13}$	$\frac{34}{21}$	$\frac{55}{34}$

Use a calculator to divide and convert each fraction into decimal form.

A graph of the results shows each term getting closer to an ideal of 1.61803398875 . . or round $n-1$ off to 1.618 or even 1.62: Notice how it begins crudely, F ${ }_{2}$ sing far over then

Historical names of the Golden Mean:

Plato
Euclid
Romans
Luca Pacioli
Christopher Clavius
Johannes Kepler Johann F. Lorentz
J. Leslie

Adoly Zeising
Mark Barr
the section
the extreme and mean ratio
auren sectio (golden section)
the divine proportion
Godlike proportion
the divine section
the continued division
the medial section
the golden cut
(1) (phi)

The Greek symbol Φ is the equivalent of the English sound "ph". It sounds like fly without the "F" and is used to represent the proportion that Euchid deseribed in Chapter 5 of Elements. This proportion is called the Divine Proportion. It is also known as the Golden Proportion, the Golden Mean and the Golden Razio

Historical names of the Golden Mean:	
Plato	the section
Euclid	the extreme and mean ratio
Romans	aurep sectio (goldens section)
Luca Pacioli	the divine proportion
Christopher Clavius	Godlike proportion
Johannes Kepler	the divine section
Johann F. Lorentz	the continued division
J. Leslie	the medial section
Adolf Zeising	the golden cut
Mark Barr	$\Phi($ phi)

The Fibonacci sequence has fascinating number properties. For example, its part resembles the whole. Use a calculator to divide the twelfth term, 89, into unity. The result is an endless decimal that, broken into parts, replicates the entire Fibonacci sequence: $(1 / 89=$.01123581321345589144...)

Fibonacci sequence:
011235813213455891442333776109871597
Although this proportion appears to have been understood for centuries, it was first articulated mathemarically by Euclid of Alexandria (ca. $325-2.6$ § B.C.E.) in his book, Elements. In the fifth chaprer, Euclid drew a line and divided it into what he called iss "exrreme and mean rano":

A straight line is satd to have been cut in extreme and mean ratuo when, as the whole line is to the greater seg. ments, so ts the greater to the lesser

Avoid extremes---keep the Golden Mean.
Cleobulus of Lindus (sixth century B.C., one of the Seven Wise Men of ancient Greece)
"There's a limit, a measure in things," which the intelligent man will neither fall short of nor exceed.

Horace (65-8 B.C., Satires. I, 1.105)

To develop a complete mind:
Study the science off art:
Study the art of science.
Learm how to see.
Realize that everything
connects to everything else.

- leonardo da vinci

